(本小题满分14分)已知两定点,若点P满足。(1)求点P的轨迹及其方程。(2)直线与点P的轨迹交于A、B两点,若,且曲线E上存在点C,使,求实数
(本小题满分12分)正四棱柱中,,点在上,且.(1) 证明:平面;(2) 求二面角的余弦值.
(本小题满分12分)已知函数在时有极值,其图象在点处的切线与直线平行.(1)求的值和函数的单调区间;(2)若当时,恒有,试确定的取值范围.
(本小题满分12分)设向量,,其中.(1)请列出有序数组的所有可能结果;(2)记“使得成立的”为事件,求事件发生的概率.
(本小题满分12分)如图,直三棱柱,底面中,,,棱,分别是的中点.(1) 求的值;(2) 求直线与平面所成的角的正弦值.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)数列各项均不为0,前n项和为,,的前n项和为,且,若数列共3项,求所有满足要求的数列;(2)求证:是满足已知条件的一个数列;(3)请构造出一个满足已知条件的无穷数列,并使得;若还能构造其他符合要求的数列,请一并写出(不超过四个)。