(本小题满分12分)如图,直三棱柱,底面中,,,棱,分别是的中点.(1) 求的值;(2) 求直线与平面所成的角的正弦值.
已知(a2+1)n展开式中的各项系数之和等于(x2+)5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值(a∈R).
4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球. (1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法? (2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?
五位老师和五名学生站成一排: (1)五名学生必须排在一起共有多少种排法? (2)五名学生不能相邻共有多少种排法? (3)老师和学生相间隔共有多少种排法?
在(2x-3y)10的展开式中,求: (1)二项式系数的和; (2)各项系数的和; (3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x的奇次项系数和与x的偶次项系数和.
(1)求(x2-)9的展开式中的常数项; (2)已知(-)9的展开式中x3的系数为,求常数a的值; (3)求(x2+3x+2)5的展开式中含x的项.