已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假。求实数m的取值范围。
如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D. (1)求椭圆和双曲线的标准方程; (2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1; (3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
设函数,,,且以为最小正周期. (1)求; (2)求的解析式; (3)已知,求的值.
已知圆C与两坐标轴都相切,圆心C到直线的距离等于. (1)求圆C的方程. (2)若直线与圆C相切,求的最小值.
在锐角△中,、、分别为角、、所对的边,且 (1)确定角的大小; (2)若,且△的面积为,求的值.
已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,,,过点F的直线与双曲线右支交于点. (Ⅰ)求此双曲线的方程; (Ⅱ)求面积的最小值.