过抛物线的对称轴上的定点,作直线与抛物线相交于两点(1)试证明两点的纵坐标之积为定值;(2)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
(本小题满分14分)已知,函数,.(的图象连续不断) (Ⅰ) 求的单调区间; (Ⅱ) 当时,证明:存在,使; (Ⅲ) 若存在属于区间的,且,使,证明:.
(本小题满分14分)已知椭圆()的离心率为,右焦点到直线的距离为. (1)求椭圆的方程; (2)已知点,斜率为的直线交椭圆于两个不同点. ,设直线与的斜率分别为,, ①若直线过椭圆的左顶点,求此时,的值; ②试猜测,的关系,并给出你的证明.
(本小题满分14分)如图,四棱锥中,,底面为梯形,,,且,. (1)求证:; (2)求二面角的余弦值.
(本小题满分14分)设表示数列的前项和. (1)若为公比为的等比数列,写出并推导的计算公式; (2)若,,求证:<1.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下: 记成绩不低于分者为“成绩优秀”. (1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望; (2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?