(本小题满分14分)已知函数在与时都取得极值 (1)求的值; (2)若对,不等式恒成立,求的取值范围
求值(1)已知,求的值;(2)已知,求的值。
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)
(1)如果展开式中,第四项与第六项的系数相等。求,并求展开式中的常数项;(2)求展开式中的所有的有理项。
已知函数,.(其中为自然对数的底数).(1)设曲线在处的切线与直线垂直,求的值;(2)若对于任意实数≥0,恒成立,试确定实数的取值范围;(3)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).