(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由沿棱柱侧面经过棱到点的最短路线长为,设这条最短路线与的交点为.(1)求三棱柱的体积;(2)在面内是否存在过的直线与面平行?证明你的判断;(3)证明:平面⊥平面.
已知函数f(x)=cos 2x﹣sin 2x+ 1 2 ,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a= 19 ,角B所对边b=5,若f(A)=0,求△ABC的面积.
如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA 1的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
已知一个口袋有 m 个白球, n 个黑球 ( m , n ∈ N * , n ≥ 2 ) ,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…, m + n 的抽屉内,其中第k次取出的球放入编号为k的抽屉 ( k = 1 , 2 , 3 , … , m + n ) .
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 p ;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E ( X ) 是 X 的数学期望,证明 E ( X )< n ( m + n ) ( n - 1 ) .
如图,在平行六面体 ABCD ﹣ A 1 B 1 C 1 D 1 中, A A 1 ⊥ 平面 ABCD ,且 AB = AD = 2 , A A 1 = 3 , ∠ BAD = 120 ° .
(Ⅰ)求异面直线 A 1 B 与 A C 1 所成角的余弦值;
(Ⅱ)求二面角 B ﹣ A 1 D ﹣ A 的正弦值.
已知a,b,c,d为实数,且 a 2 + b 2 = 4 , c 2 + d 2 = 16 ,证明 ac + bd ≤ 8 .