已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.(1)求双曲线的标准方程;(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
已知圆, (Ⅰ)若过定点()的直线与圆相切,求直线的方程; (Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标; (Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。
如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。 (1)求证:平面MAP⊥平面SAC。 (2)求二面角M—AC—B的平面角的正切值;
如图,是边长为2的正三角形,若平面,平面平面,,且 (Ⅰ)求证://平面; (Ⅱ)求证:平面平面。
已知动圆经过点和 (Ⅰ)当圆面积最小时,求圆的方程; (Ⅱ)若圆的圆心在直线上,求圆的方程。
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动 (Ⅰ)求三棱锥E-PAD的体积; (Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由; (Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF