某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.(1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a最多可设为多少元?
判断下列命题的真假,并写出这些命题的否定。(1)存在一个四边形,它的对角线互相垂直。
(本小题满分14分)已知的图像在点处的切线与直线平行.(1)求a,b满足的关系式;(2)若上恒成立,求a的取值范围;(3)证明: ()
(本小题满分14分)已知数列满足:(1)求的值;(2)求证:数列是等比数列; (3)令(),如果对任意,都有,求实数的取值范围.
(本小题满分14分)已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(本小题满分12分)如图某市现有自市中心O通往正西和北偏东30°方向的两条主要公路,为了解决该市交通拥挤问题,市政府决定修建一条环城公路.分别在通往正西和北偏东30°方向的公路上选用A、B两点,使环城公路在A、B间为直线段,要求AB路段与市中心O的距离为10 km,且使A、B间的距离|AB|最小.请你确定A、B两点的最佳位置.