(本小题满分15分)设,椭圆方程为,抛物线方程为.如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
(本小题10分) 某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的年平均费用最少?最少是多少?
(本题10分)某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量。
已知生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?
(本小题10分) 已知△ABC的内角A、B、C所对的边分别为a,b,c,且a=2, cosB=. (1)若b=4,求sinA的值; (2) 若△ABC的面积S△ABC=4,求b,c的值.
(本题10分) 已知等差数列满足,为的前项和. (1)求通项及当为何值时,有最大值,并求其最大值。 (2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
(本题10分) (1) 若集合,求; (2) 若集合,正数满足,的所有可能取值组成的集合为,求。