(本小题满分11分)已知,其中。(1)求;(2) 时,判别的单调性并求时的最小值;(3)对于,当 时恒有 ,求的取值范围。
(高考真题)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
在如图所示的几何体中,面为正方形,面为等腰梯形,//,,,.(Ⅰ)求证:平面;(Ⅱ)(能力提升)线段上是否存在点,使平面平面?证明你的结论.
如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;
(高考真题)如图,在三棱柱中,侧棱垂直于底面,,,BC=1,、分别为、的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.
如图,已知四边形是正方形,平面,∥,,,,分别为,,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)(有点难度哦)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.