(12分) 一副扑克牌共52张(除去大小王),规定:①J、Q、 K、A算1点;②每次抽取一张,抽到被3整除的点数奖励5元,抽到黑桃A奖励50元;③如未中奖,则抽奖人每次付出5元。现有一人抽奖2次(每次抽后放回),(1)求这人不亏钱的概率;(2)设这人输赢的钱数为,求。
已知等差数列 (n∈N*),它的前n项和为,且求数列的前n项和的最小值.
已知a,b>0,且a+b=1,求: (Ⅰ)+的最小值;(Ⅱ)++的最小值.
设函数f(x)=(ax2-2x)•ex,其中a≥0.(1)当a=时,求f(x)的极值点;(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
已知函数f(x)=|2x+1|-|x-3|.(Ⅰ)解不等式f(x)≤4;(Ⅱ)若存在x使得f(x)+a≤0成立,求实数a的取值范围.
双曲线C与椭圆+=1有相同焦点,且经过点(4,).(1)求双曲线的方程;(2)若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=60°,求△F1PF2的面积.