(本小题满分14分)设动圆过点,且与定圆内切,动圆圆心的轨迹记为曲线,点的坐标为.(1)求曲线的方程;(2)若点为曲线上任意一点,求点和点的距离的最大值;(3)当时,在(2)的条件下,设是坐标原点,是曲线上横坐标为的点,记△的面积为,以为边长的正方形的面积为.若正数满足,问是否存在最小值?若存在,求出此最小值;若不存在,请说明理由.
为了更好地开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表:(单位:人) (Ⅰ)求的值; (Ⅱ)若从“模拟联合国”与“话剧”社团已抽取的人中选人担任指导小组组长,求这人分别来自这两个社团的概率.
已知函数 (1)讨论函数的单调性; (2)若函数在处取得极值,不等式对恒成立,求实数的取值范围; (3)当时,证明不等式.
已知平面内一动点到点的距离等于它到直线的距离. (Ⅰ)求动点的轨迹的方程; (Ⅱ)若直线与曲线交于两点,且,又点,求的最小值.
如图,正三角形的边长为,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,. (1)当时,求的大小; (2)求的面积S的最小值及使S得取最小值时的值.
如图,在三棱柱 中,已知 ,, 与平面所成角为 ,平面. (Ⅰ)求证:; (Ⅱ)求三棱锥的高.