(本小题满分14分)设动圆过点,且与定圆内切,动圆圆心的轨迹记为曲线,点的坐标为.(1)求曲线的方程;(2)若点为曲线上任意一点,求点和点的距离的最大值;(3)当时,在(2)的条件下,设是坐标原点,是曲线上横坐标为的点,记△的面积为,以为边长的正方形的面积为.若正数满足,问是否存在最小值?若存在,求出此最小值;若不存在,请说明理由.
已知.(I)判断的奇偶性;(II)求的值域.
数学运算中,常用符号来表示算式,如=,其中,.(Ⅰ)若,,,…,成等差数列,且,公差,求证:;(Ⅱ)若,,记,且不等式对于恒成立,求实数的取值范围.
抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记表示的整数部分,如:,设为随机变量,.(Ⅰ)求概率;(Ⅱ)求的分布列,并求其数学期望.
在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点P的直角坐标.
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.