(本小题满分14分)设动圆过点,且与定圆内切,动圆圆心的轨迹记为曲线,点的坐标为.(1)求曲线的方程;(2)若点为曲线上任意一点,求点和点的距离的最大值;(3)当时,在(2)的条件下,设是坐标原点,是曲线上横坐标为的点,记△的面积为,以为边长的正方形的面积为.若正数满足,问是否存在最小值?若存在,求出此最小值;若不存在,请说明理由.
设的内角、、的对边分别为、、,且满足. (1)求角的大小; (2)若,求面积的最大值.
已知函数(). (1)若的定义域和值域均是,求实数的值; (2)若对任意的,,总有,求实数的取值范围.
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为. (Ⅰ)求a,b的值; (Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
已知函数f(x)=-alnx,a∈R. (Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式; (Ⅱ)对(Ⅰ)中的φ(a), (ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1; (ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1. (Ⅰ)设FC的中点为M,求证:OM∥平面DAF; (Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.