(本小题14分)如图,在等腰梯形中,将 沿折起,使平面⊥平面.(1)求证:⊥平面;(2)求二面角的大小;(3)若是侧棱中点,求直线与平面所成角的正弦值.
(本小题12分)为了了解某校高一学生体能情况,抽取200位同学进行1分钟跳绳次数测试,将所得数据整理后画出频率分布直方图(如图所示),请回答下列问题: (1)次数在100~110之间的频率是多少? (2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少? (3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?
(本小题12分)已知,,点的坐标为. (1)求当时,点满足的概率; (2)求当时,点满足的概率.
命题:关于的不等式,对一切恒成立,命题:函数是增函数,若为真,为假,求实数的取值范围.
已知椭圆经过点,离心率为. (1)求椭圆的方程; (2)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.
(本小题共12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动. (1)当点E为BC的中点时, 证明EF//平面PAC; (2)求三棱锥E-PAD的体积; (3)证明:无论点E在边BC的何处,都有PEAF.