某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望
的三个内角所对的边分别为.向量,,且. (1)求的大小; (2)现在给出下列三个条件:①;②;③;试从中选择两个条件以确定,求出所确定的的面积.
已知函数在点处的切线方程为. (1)求求函数的单调增区间; (2)是否存在常数,使得时,?若存在,求出实数的取值范围;若不存在,简要说明理由.
已知满足,且. (1)证明数列是等差数列,并求其通项公式; (2)记,数列的前项和为,证明.
为了降低能源损耗,国家对新建住宅的屋顶和外墙都要求建造隔热层,某房地产公司计划采用可使用30年的新型隔热层,已知每厘米厚的隔热层建造成本为8万元,每栋楼房每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为6万元.设为隔热层建造费用与30年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知函数(,)的部分图象如图所示, (1)求函数的解析式; (2)若,求函数在区间上的最值.