(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点. (Ⅰ)证明:EF∥平面PAD; (Ⅱ)求三棱锥E—ABC的体积V.
设离散型随机变量X的概率分布为
求:(1)2X+1的概率分布; (2)|X-1|的概率分布.
某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的概率分布.
一袋中装有编号为1,2,3,4,5,6的6个大小相同的球,现从中随机取出3个球,以X表示取出的最大号码. (1)求X的概率分布; (2)求X>4的概率.
已知等腰Rt△ABC中,∠C=90°. (1)在线段BC上任取一点M,求使∠CAM<30°的概率; (2)在∠CAB内任作射线AM,求使∠CAM<30°的概率.
假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?