(本小题满分12分)已知函数,且函数的图象关于原点对称,其图象在x=3处的切线方程为(1)求的解析式;(2)是否存在区间[m,n],使得函数的定义域和值域均为[m,n],且其解析式为 的解析式?若存在,求出这样一个区间[m,n];若不存在,则说明理由.
(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,,,以∠BAC为例。
在边长为a的正方形ABCD所在平面外取一点P,使PA⊥平面ABCD,且PA=AB,在AC的延长线上取一点G。 (1)若CG=AC,求异面直线PG与CD所成角的大小;(2)若CG=AC,求点C到平面PBG的距离; (3)当点G在AC的延长线上运动时(不含端点C),求二面角P-BG-C的取值范围。
已知函数,.(1)设是函数图象的一条对称轴,求的值;(2)求函数的单调递增区间.
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线上,△ABC的重心与此抛物线的焦点F重合(如图)(1)写出该抛物线的方程和焦点F的坐标;(2)求线段BC中点M的坐标;(3)求BC所在直线的方程.
将圆x2 + y2 + 2x – 2y = 0按向量a= (1,–1)平移得到圆O,直线l和圆O相交于A、B两点,若在圆O上存在点C,使,且=a.(1)求的值;(2)求弦AB的长;(3)求直线l的方程.