(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,,,以∠BAC为例。
直四棱柱中,底面是等腰梯形,,,为的中点,为中点.(1) 求证:;(2) 若,求与平面所成角的大小
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率
已知数列的前项和,。(I)求数列的通项公式;(II)记,求
已知函数是奇函数,且满足(Ⅰ)求实数、的值; (Ⅱ)试证明函数在区间单调递减,在区间单调递增;(Ⅲ)是否存在实数同时满足以下两个条件:1不等式对恒成立; 2方程在上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.
已知函数 (为实常数). (1)若,求的单调区间; (2)若,设在区间的最小值为,求的表达式;(3)设,若函数在区间上是增函数,求实数的取值范围.