已知ΔABC的三条边分别为求证:
设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质,②求函数的单调区间.(2)已知函数具有性质,给定,,且,若||<||,求的取值范围.
设函数,曲线在点(1,处的切线为. (Ⅰ)求;(Ⅱ)证明:.
一走廊拐角处的横截面如图所示,已知内壁和外壁都是半径为1m的四分之一圆弧,分别与圆弧相切于两点,且两组平行墙壁间的走廊宽度都是1m.(1)若水平放置的木棒的两个端点分别在外壁和上,且木棒与内壁圆弧相切于点设试用表示木棒的长度(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.
在中,内角所对的边分别为.已知,(1)求角的大小;(2)若,求的面积.
已知命题指数函数在上单调递减,命题关于的方程的两个实根均大于3.若“或”为真,“且”为假,求实数的取值范围.