(本小题满分10分)设函数,其中向量,,,(1)求函数的最大值和最小正周期;(2)求函数在区间上的单增区间。
已知函数,.(1)若,判断函数的奇偶性,并加以证明;(2)若函数在上是增函数,求实数的取值范围;(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.
我国加入WTO后,根据达成的协议,若干年内某产品关税与市场供应量的关系允许近似的满足:(其中为关税的税率,且,为市场价格,、为正常数),当时的市场供应量曲线如图:(1)根据图象求、的值;(2)若市场需求量为,它近似满足.当时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元,求税率的最小值.
已知函数且的图象经过点. (1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.
已知函数(其中)的部分图象如图所示.(1)求函数的解析式;(2)求函数的单调增区间;(3)求方程的解集.
已知,,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?