设函数 f x = 3 sin ω x + π 6 , ω > 0 , x ∈ - ∞ , + ∞ ,且以 π 2 为最小正周期. (1)求 f 0 ; (2)求 f x 的解析式; (3)已知 f α 4 + π 12 = 9 5 ,求 sin α 的值.
一个有穷等比数列的首项为,项数为偶数,如果其奇数项的和为,偶数项的和为,求此数列的公比和项数.
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE。
.(本小题12分)设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.
(本小题12分) 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率. (精确到0.001)