如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
(本小题满分12分)一缉私艇发现在北偏东方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,.求追及所需的时间和角的正弦值.
(本小题满分12分)已知二次函数的二次项系数为,且不等式的解集为(1,3)。 (1)若方程有两个相等的实数根,求的解析式; (2)若的最大值为正数,求的取值范围。
(本小题满分10分)已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是一个等比数列的第二项、第三项、第四项. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设=(n∈N*),=b1+b2+…+bn,是否存在最大的整数t,使得任意的n均有总成立?若存在,求出t;若不存在,请说明理由
(本小题满分10分)已知A、B、C为△ABC的三内角,且其对边分别为a、b、c.若, ,且·=. (1) 求角A的大小; ⑵ 若a=2,三角形面积S=,求b+c的值.
(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (1)证明:DN//平面PMB; (2)证明:平面PMB平面PAD; (3)求点A到平面PMB的距离.