正实数数列 { a n } 中, a 1 = 1 , a 2 = 5 ,且 { a n 2 } 成等差数列. (1) 证明数列 { a n } 中有无穷多项为无理数; (2)当 n 为何值时, a n 为整数,并求出使 a n < 200 的所有整数项的和.
(本小题满分10分)(选修4—5,:不等式选讲) (Ⅰ)证明柯西不等式:; (Ⅱ)若且,用柯西不等式求+的最大值.
(本小题满分10分)选修4-4:坐标系与参数方程 将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (Ⅰ)写出C的参数方程; (Ⅱ)设直线与C的交点为,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.
(本小题满分10分)选修4-1:几何证明选讲. 如图,在中,是的角平分线,的外接圆交于点,. (Ⅰ)求证:; (Ⅱ)当时,求的长.
(本小题满分12分)已知函数f(x)=alnxax3(a∈R)。 (Ⅰ)求f(x)的单调区间 (Ⅱ)设a=-1,求证:当x∈(1,+∞)时,f(x)+2>0 (Ⅲ)求证:··……<(n∈N+且n≥2)
(本小题满分12分)设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N. (Ⅰ)若直线MN的斜率为,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.