已知函数 f ( x ) = a x + b x + c ( a > 0 ) 的图象在点 ( 1 , f ( 1 ) ) 处的切线方程为 y = x - 1 .
(I)用 a 表示出 b , c ;
(II)若 f ( x ) ≥ ln x 在 [ 1 , + ∞ ) 上恒成立,求 a 的取值范围;
(III)证明: 1 + 1 2 + 1 3 + . . . + 1 n > ln ( n + 1 ) + n 2 ( n + 1 ) ( n ≥ 1 ) .
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. (I)求证:平面; (II)求二面角的余弦值大小; (III)求证:平面⊥平面.
已知三次函数在和时取极值,且. (Ⅰ) 求函数的表达式; (Ⅱ)求函数的单调区间和极值; (Ⅲ)若函数在区间上的值域为,试求、n应满足的条件。
设是平面上的两个向量,且互相垂直. (1)求λ的值; (2)若求的值.
已知数集 A= a 1 , a 2 , ⋯ a n 1 ≤ a 1 < a 2 < ⋯ a n , n ≥ 2 具有性质 P ;对任意的 i,j 1 ≤ i ≤ j ≤ n , a i a j 与 a j a i 两数中至少有一个属于 A 。 (Ⅰ)分别判断数集 1 , 3 , 4 与 1 , 2 , 3 , 6 是否具有性质 P ,并说明理由; (Ⅱ)证明: a 1 =1 ,且 a 1 + a 2 + ⋯ + a n a 1 - 1 + a 2 - 1 + ⋯ a n - 1 = a n ; (Ⅲ)证明:当 n=5 时, a 1 , a 2 , a 3 , a 4 , a 5 成等比数列。
如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B. (Ⅰ)求证:A,M,B三点的横坐标成等差数列; (Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程; (Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.