如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.(Ⅰ)求证:AF∥平面PCE;(Ⅱ)求证:平面PCE⊥平面PCD;(Ⅲ)求三棱锥C-BEP的体积.
集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数,都有. (1)试判断f(x)= x2及g(x)=log2x是否在集合A中,并说明理由; (2)设f(x)ÎA且定义域为(0,+¥),值域为(0,1),,试求出一个满足以上条件的函数f (x)的解析式.
(本小题满分14分)已知,设:函数在R上单调递减;:函数的图象与x轴至少有一个交点.如果P与Q有且只有一个正确,求的取值范围.
已知函数(1)(2)
(本小题满分14分)某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现在提高售价以赚取更多利润.已知每涨价0.5元,该商店的销售量会减少10件,问将售价定为多少时,才能使每天的利润最大?其最大利润为多少?
已知函数.(1)设的定义域为A,求集合A;(2)判断函数在(1,+)上单调性,并用定义加以证明.