如图,在矩形 A B C D 中,点 E , F 分别在线段 A B , A D 上, A E = E B = A F = 2 3 F D = 4 .沿直线 E F 将 △ A E F 翻折成 △ A ` E F ,使平面 A , E F ⊥ 平面 B E F .
(Ⅰ)求二面角 A - F D - C 的余弦值; (Ⅱ)点 M , N 分别在线段 F D , B C 上,若沿直线 M N 将四边形 M N C D 向上翻折,使 C 与 A 重合,求线段 F M 的长.
已知函数. (Ⅰ)若a=1,求函数f(x)的极值; (Ⅱ)若f(x)在[1,+∞)内为单调增函数,求实数的取值范围; (Ⅲ)对于,求证:.
已知函数对一切、都有:,并且当时,. (1)判定并证明函数在上的单调性; (2)若,求不等式的解集.
如图,四棱锥中,底面是矩形,底面,,点是侧棱的中点. (Ⅰ)证明:平面; (Ⅱ)若,求二面角的余弦值.
设,. (Ⅰ)化简集合; (Ⅱ)若,求实数的取值范围.
已知:关于的方程有两个不相等的负实根;:关于的不等式的解集为. 若为真,为假,求实数的取值范围.