如图,一个小球从 M 处投入,通过管道自上而下落 A 或 B 或 C 。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到 A , B , C ,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量 ξ 为获得 k ( k = 1 , 2 , 3 )等奖的折扣率,求随机变量 ξ 的分布列及期望 E ξ ; (II)若有3人次(投入l球为l人次)参加促销活动,记随机变量 η 为获得1等奖或2等奖的人次,求 P ( η = 2 ) .
已知等差数列中,. ⑴求数列的通项公式; ⑵若数列满足,设,且,求的值.
数列满足,是常数. ⑴当时,求及的值; ⑵数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; ⑶求的取值范围,使得存在正整数,当时总有.
求数列的前项和.
⑴ 求和:; ⑵ 求和:; ⑶ 求和:.