为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有 99 % 的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由. 附:
(本小题满分12分)已知是同一平面内的三个向量,其中. (1)若,且,求的坐标. (2)若,且与垂直,求与的夹角.
(本小题满分12分)(1)已知角的顶点在原点,始边与轴的非负半轴重合,终边经过点,求的值. (2)在中,,求的值.
已知, (1)求函数()的单调递增区间; (2)设的内角满足,而,求边上的高长的最大值。
(本题12分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中=1,2,3,4,5, 6,7. (1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图; (2)求回归直线方程;(结果四舍五入后保留到小数点后两位) (3)预测进店人数为80人时,商品销售的件数.(结果保留整数) (参考公式:)
在等比数列中,,且,是和的等差中项. (1)求数列的通项公式; (2)若数列满足(),求数列的前项和.