如图,在五面体 A B C D E F 中,四边形 A D E F 是正方形, F A ⊥ 平面 A B C D , B C ∥ A D , C D = 1 , A D = 2 2 , ∠ B A D = ∠ C D A = 45 ° .
(Ⅰ)求异面直线 C E 与 A F 所成角的余弦值; (Ⅱ)证明 C D ⊥ 平面 A B F ; (Ⅲ)求二面角 B - E F - A 的正切值。
(本小题满分12分)已知函数. (1)求函数的最小正周期及单调递增区间; (2)的内角的对边长分别为,若且试判断的形状,并说明理由.
(本小题满分12分) 已知,数列满足:,,. (Ⅰ) 求证:数列是等差数列;数列是等比数列;(其中; (Ⅱ) 记,对任意的正整数,不等式恒成立,求的取值范围.
(本小题满分12分) 已知点是椭圆上一点,是椭圆的两焦点,且满足 (Ⅰ) 求椭圆的两焦点坐标; (Ⅱ) 设点是椭圆上任意一点,如果最大时,求证、两点关于原点不对称.
(本小题满分12分) 已知是奇函数. (Ⅰ) 求的值; (Ⅱ) 若关于的方程有实解,求的取值范围.
(本小题满分13分) 已知函数,的最大值为,最小值为. (Ⅰ)求的最小正周期; (Ⅱ)求的单调递增区间.