设 f ( x ) 使定义在区间 ( 1 , + ∞ ) 上的函数,其导函数为 f ` ( x ) .如果存在实数 a 和函数 h ( x ) ,其中 h ( x ) 对任意的 x ∈ ( 1 , + ∞ ) 都有 h ( x ) > 0 ,使得 f ` ( x ) = h ( x ) ( x 2 - a x + 1 ) ,则称函数 f ( x ) 具有性质 P ( a ) . (1)设函数 f ( x ) = h ( x ) + b + 2 x + 1 ( x > 1 ) ,其中 b 为实数 ①求证:函数 f ( x ) 具有性质 P ( b ) ;
②求函数 f ( x ) 的单调区间 (2)已知函数 g ( x ) 具有性质 P ( 2 ) ,给定 x 1 , x 2 ∈ ( 1 , + ∞ ) , x 1 < x 2 ,设 m 为实数. α = m x 1 + ( 1 - m ) x 2 , β = ( 1 - m ) x 1 + m x 2 ,且 α > 1 , β > 1 ,若 g ( α ) - g ( β ) < g ( x 1 ) - g ( x 2 ) ,求 m 的取值范围
近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件. (1)将该产品的利润y万元表示为促销费用x万元的函数; (2)促销费用投入多少万元时,厂家的利润是大?
已知数列的前n项和为, (1)求证:数列为等差数列; (2)设数列的前n项和为Tn,求Tn.
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1. (1)求证:AB∥平面PCD; (2)求证:BC⊥平面PAC;
在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点在角α的终边上,点在角β的终边上,且 (1)求 (2)求P,Q的坐标并求的值
椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线于M、N两点,且. (1)求椭圆E的方程; (2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.