设 f ( x ) 使定义在区间 ( 1 , + ∞ ) 上的函数,其导函数为 f ` ( x ) .如果存在实数 a 和函数 h ( x ) ,其中 h ( x ) 对任意的 x ∈ ( 1 , + ∞ ) 都有 h ( x ) > 0 ,使得 f ` ( x ) = h ( x ) ( x 2 - a x + 1 ) ,则称函数 f ( x ) 具有性质 P ( a ) . (1)设函数 f ( x ) = h ( x ) + b + 2 x + 1 ( x > 1 ) ,其中 b 为实数 ①求证:函数 f ( x ) 具有性质 P ( b ) ;
②求函数 f ( x ) 的单调区间 (2)已知函数 g ( x ) 具有性质 P ( 2 ) ,给定 x 1 , x 2 ∈ ( 1 , + ∞ ) , x 1 < x 2 ,设 m 为实数. α = m x 1 + ( 1 - m ) x 2 , β = ( 1 - m ) x 1 + m x 2 ,且 α > 1 , β > 1 ,若 g ( α ) - g ( β ) < g ( x 1 ) - g ( x 2 ) ,求 m 的取值范围
如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把 折起,使点 C 到达点 P 的位置,且 PF ⊥ BF .
(1)证明:平面 PEF ⊥ 平面 ABFD ;
(2)求 DP 与平面 ABFD 所成角的正弦值.
在平面四边形 ABCD 中, ∠ ADC = 9 0 ∘ , ∠ A = 4 5 ∘ , AB = 2 , BD = 5 .
(1)求 cos ∠ ADB ;
(2)若 DC = 2 2 ,求 BC .
设函数 f ( x ) = 5 - x + a - x - 2 .
(1)当 a = 1 时,求不等式 f ( x ) ≥ 0 的解集;
(2)若 f ( x ) ≤ 1 恒成立,求 a 的取值范围.
在直角坐标系 xOy 中,曲线 C 的参数方程为 x = 2 cosθ y = 4 sinθ ( θ 为参数),直线 l 的参数方程为 x = 1 + tcosα y = 2 + tsinα ( t 为参数).
(1)求 C 和 l 的直角坐标方程;
(2)若曲线 C 截直线 l 所得线段的中点坐标为 1 , 2 ,求 l 的斜率.
已知函数 f x = e x - a x 2 .
(1)若 a = 1 ,证明:当 x ≥ 0 时, f x ≥ 1 ;
(2)若 f x 在只有一个零点,求 a 的值.