已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆()的左、右焦点分别为、,点,过点且与垂直的直线交轴负半轴于点,且.(1)求证:△是等边三角形;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线与交于、两点,是点关于轴的对称点.在轴上是否存在一个定点,使得、、三点共线,若存在,求出点的坐标;若不存在,请说明理由.
本题共有2个小题,第1小题满分5分,第2小题满分9分.某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作.(1)令,,求的取值范围;(2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.
本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,四棱锥的底面为菱形,平面,,,为的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角大小的余弦值.
本题共有2个小题,第1小题满分6分,第2小题满分6分.在△中,已知,外接圆半径.(1)求角的大小;(2)若角,求△面积的大小.
本题共有3个小题,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分7分.各项均为正数的数列的前项和为,且对任意正整数,都有.(1)求数列的通项公式;(2)如果等比数列共有项,其首项与公比均为,在数列的每相邻两项与之间插入个后,得到一个新的数列.求数列中所有项的和;(3)如果存在,使不等式成立,求实数的范围.