已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
如果函数是定义在上的增函数,且满足 (1)求的值;(2)已知且,求的取值范围;(3)证明:.
(1)若在上单调递减,求的取值范围.(2)若使函数和都在上单调递增,求的取值范围.
某渔场鱼群的最大养殖量为吨,为保证鱼群的生长空间,实际养殖量要小于,留出适当的空闲量,空闲量与最大养殖量的比值叫空闲率,已知鱼群的年增加量(吨)和实际养殖量(吨)与空闲率的乘积成正比(设比例系数)。(1)写出与的函数关系式,并指出定义域;(2)求鱼群年增长量的最大值;(3)当鱼群年增长量达到最大值时,求的取值范围.
已知二次函数.⑴当时,求函数的最大值和最小值;⑵求实数的取值范围,使在区间上是单调函数.
(1)用函数单调性定义证明:在上是减函数;(2)求函数的值域.