设,方程有唯一解,已知,且(1)求数列的通项公式;(2)若,求和;(3)问:是否存在最小整数,使得对任意,有成立,若存在;求出的值;若不存在,说明理由。
(本题满分18分)第一题满分5分,第二题满分5分,第三题满分8分.如图,有一公共边但不共面的两个三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分别交AB,AC,A1B,A1C于点D,E,D1,E1。(1)讨论这三条交线ED,CB, E1 D1的关系。(2)当BC//平面DEE1D1时,求的值;(3)当BC不平行平面DEE1D1时, 的值变化吗?为什么?
第一题满分4分,第二题满分6分,第三题满分6分.已知动圆过定点P(1,0),且与定直线相切。(1)求动圆圆心的轨迹M的方程;(2)设过点P,且倾斜角为的直线与曲线M相交于A,B两点,A,B在直线上的射影是。求梯形的面积;(3)若点C是(2)中线段上的动点,当△ABC为直角三角形时,求点C的坐标。
第一题满分4分,第二题满分4分,第三题满分6分.甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将4张扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。(1)设分别表示甲、乙抽到的牌的数字(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示),写出甲乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若甲抽到的牌的牌面数字不比乙大,则乙胜。你认为此游戏是否公平,说明你的理由。
第一题满分7分,第二题满分7分.已知,(1)若,求的值;(2)若,求中含项的系数;
第一题满分5分,第二题满分7分.已知复数,=2,是虚部为正数的纯虚数。(1)求的模;(2)求复数。