(本题满分16分,第(1)小题6分,第(2)小题10分)如图,弯曲的河流是近似的抛物线,公路恰好是的准线,上的点到的距离最近,且为千米,城镇位于点的北偏东处,千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路以便建立水陆交通网.(1)建立适当的坐标系,求抛物线的方程;(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头的位置),并求公路总长的最小值(精确到0.001千米)
(1)求实数m的值; (2)判断函数在上的单调性,并给出证明; (3)当Í时,函数的值域是,求实数与
(1)函数的解析式. (2)求出函数的单调递增区间与对称轴方程,对称中心坐标;(3)当时,求函数的值域
(1)若,求实数的值;(2)若,求实数的值;(3)若,且存在不等于零的实数使得,试求的最小值.
(1)计算:;(2)证明:是定值
(1)求的值及集合、; (2)设全集,求的所有子集