(本题满分16分,第(1)小题6分,第(2)小题10分)如图,弯曲的河流是近似的抛物线,公路恰好是的准线,上的点到的距离最近,且为千米,城镇位于点的北偏东处,千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路以便建立水陆交通网.(1)建立适当的坐标系,求抛物线的方程;(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头的位置),并求公路总长的最小值(精确到0.001千米)
在中,角所对的边分别为,且满足,.(1)求的面积;(2)若,求的值.
已知函数.(1)求不等式的解集;(2)若关于的不等式的解集非空,求实数的取值范围.
已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标().
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点.(1)证明:; (2)设圆的半径为1,,延长交于点,求外接圆的半径.
设.(1) 当时,取到极值,求的值;(2)当满足什么条件时,在区间上有单调递增区间?