已知平面上两定点C(1,0),D(1,0)和一定直线,为该平面上一动点,作,垂足为Q,且(1)问点在什么曲线上,并求出曲线的轨迹方程M;(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,,二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.(Ⅰ)求证:AP⊥平面BDE; (Ⅱ)求直线EB与平面PAC所成的角。
(本小题满分12分)已知数列的首项为,前项和为,且对任意的,当时,总是与的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,,求.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;
(本小题满分10分)已知向量,。(Ⅰ)若,求的值; (Ⅱ)设,求的取值范围.
已知函数.(Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;(Ⅲ)求证:.