已知平面上两定点C(1,0),D(1,0)和一定直线,为该平面上一动点,作,垂足为Q,且(1)问点在什么曲线上,并求出曲线的轨迹方程M;(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.
已知当时,恒成立,求a的取值范围
已知等腰直角三角形ABC中,C=90°,直角边BC在直线2+3y-6=0上,顶点A的坐标是(5,4),求边AB和AC所在的直线方程.
求圆心在x-y-4=0上,并且经过两圆和的交点的圆方程
设a、b、c都是正数,求证 , 三个数中至少有一个不小于2
(本小题满分15分)已知椭圆经过点(0,1),离心率 (I)求椭圆C的方程; (II)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为A’.试问:当m变化时直线与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。