在△ABC中,A点的坐标为(3,0),BC边长为2,且BC在y轴上的区间[-3,3]上滑动.(1)求△ABC外心的轨迹方程;(2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求 的最大值.并求出此时b的值
如图,四棱锥中,面,、分别为、的中点,,. (1)证明:面; (2)求面与面所成锐角的余弦值.
甲、乙两名篮球运动员,各自的投篮命中率分别为与,如果每人投篮两次. (Ⅰ)求甲比乙少投进一次的概率; (Ⅱ)若投进一个球得分,未投进得分,求两人得分之和的分布列及数学期望.
在中,已知,. (Ⅰ)求和角的值; (Ⅱ)若角,,的对边分别为,,,且,求,的值.
已知直线的参数方程为:(为参数),曲线的极坐标方程为:. (1)以极点为原点,极轴为轴正半轴,建立直角坐标系,求曲线的直角坐标方程; (2)若直线被曲线截得的弦长为,求的值.
设函数(),. (1)若函数在定义域内单调递减,求实数的取值范围; (2)若对任意,都有唯一的,使得成立,求实数的取值范围.