(本小题满分14分) 已知,椭圆过点,两个焦点为。 (1) 求椭圆C的方程; (2) 是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值。
已知(是正实数)的展开式的二项式系数之和为256,展开式中含项的系数为112. (1)求的值; (2)求展开式中奇数项的二项式系数之和; (3)求的展开式中含项的系数. (用数字作答)
4个男同学,3个女同学站成一排. (1)男生甲必须排在正中间,有多少种不同的排法? (2)3个女同学必须排在一起,有多少种不同的排法? (3)任何两个女同学彼此不相邻,有多少种不同的排法? (4)其中甲、乙两名同学之间必须有3人,有多少种不同的排法? (用数字作答)
设实部为正数的复数,满足,且复数在复平面上对应的点在第一、三象限的角平分线上. (1)求复数; (2)若为纯虚数, 求实数的值.
已知二次函数,及函数。 关于的不等式的解集为,其中为正常数。 (1)求的值; (2)R如何取值时,函数存在极值点,并求出极值点; (3)若,且,求证:。
已知函数, (1)若x=1时取得极值,求实数的值; (2)当时,求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围。