在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响.(1)用随机变量表示能够成为宣传员的人数,求的数学期望与方差;(2)若学生甲得分的数值为随机变量,求所得分数的分布列和数学期望.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
已知函数 ,(x∈(- 1,1).(Ⅰ)判断f(x)的奇偶性,并证明;(Ⅱ)判断f(x)在(- 1,1)上的单调性,并证明.
已知二次函数f(x)图象过点(0,3),它的图象的对称轴为x = 2,且f(x)的两个零点的平方和为10,求f(x)的解析式.
定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.(Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明)
计算下列各式(Ⅰ) (Ⅱ)