(本题14分)如图,在三棱锥SABC中,,O为BC的中点.(I)求证:面ABC;(II)求异面直线与AB所成角的余弦值;(III)在线段AB上是否存在一点E,使二面角的平面角的余弦值为;若存在,求的值;若不存在,试说明理由。
已知为定义在上的奇函数,当时,函数解析式为. (Ⅰ)求的值,并求出在上的解析式; (Ⅱ)求在上的最值.
某中学社团部志愿者协会共有6名男同学,4名女同学. 在这10名同学中,3名同学来自动漫社,其余7名同学来自摄影社、话剧社等其他互不相同的七个社团. 现从这10名同学中随机选取3名同学,到社区参加志愿活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学是来自互不相同社团的概率; (Ⅱ)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
已知函数,. (Ⅰ)求的最小正周期; (Ⅱ)求在闭区间上的最大值和最小值.
已知函数,其中为实数,常数. (1) 若是函数的一个极值点,求的值; (2) 当取正实数时,求函数的单调区间; (3) 当时,直接写出函数的所有减区间.
如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足. (1) 求该椭圆的离心率; (2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.