(本小题满分12分)双曲线的离心率为,右准线为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
已知a,b,c,d为实数,且 a 2 + b 2 = 4 , c 2 + d 2 = 16 ,证明 ac + bd ≤ 8 .
在平面直角坐标系 xOy 中,已知直线l的参数方程为 x = - 8 + t y = t 2 (t为参数),曲线C的参数方程为 x = 2 s 2 y = 2 2 s (s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.
已知矩阵 A = [ 0 1 1 0 ] , B = [ 1 0 0 2 ] .
(Ⅰ)求AB;
(Ⅱ)若曲线C 1: x 2 8 + y 2 2 =1在矩阵AB对应的变换作用下得到另一曲线C 2 , 求C 2的方程.
如图, A B 为半圆 O 的直径,直线 P C 切半圆 O 于点 C , AP ⊥ PC , P 为垂足.
求证:(Ⅰ) ∠ PAC = ∠ CAB ;
(Ⅱ) AC 2 = AP • AB .
已知函数 f ( x ) = x 3 + a x 2 + bx + 1 ( a > 0 , b ∈ R ) 有极值,且导函数 f ' ( x ) 的极值点是 f ( x ) 的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明: b 2 > 3 a ;
(Ⅲ)若 f ( x ) , f ' ( x ) 这两个函数的所有极值之和不小于 ﹣ 7 2 ,求a的取值范围.