已知抛物线的焦点为F,以点为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点。 (I)求证:点A在以M、N为焦点,且过点F的椭圆上; (II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由。
已知函数.(1)讨论函数的奇偶性;(2)若函数在上为减函数,求的取值范围.
如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点,是上的点.(1)求异面直线与所成角的大小(结果用反三角函数表示);(2)若,求线段的长.
已知函数,.(1)讨论在内和在内的零点情况.(2)设是在内的一个零点,求在上的最值.(3)证明对恒有.[来
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.(1)求椭圆方程及四边形的面积.(2)若四边形为梯形,求点的坐标.(3)若为实数,,求的最大值.
如图,已知平面平面,且四边形为矩形,四边形为直角梯形,,,,,.(1)作出这个几何体的三视图(不要求写作法).(2)设是直线上的动点,判断并证明直线与直线的位置关系.(3) 求三棱锥的体积.[来.