如图,已知平面平面,且四边形为矩形,四边形为直角梯形,,,,,.(1)作出这个几何体的三视图(不要求写作法).(2)设是直线上的动点,判断并证明直线与直线的位置关系.(3) 求三棱锥的体积.[来.
(本小题满分13分)某零售店近五个月的销售额和利润额资料如下表:
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;(2)用最小二乘法计算利润额关于销售额的回归直线方程;(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).
已知是函数的一个极值点,其中,.(1)求并求与的关系式;(2)当时,求方程的实根个数;(3)当时,函数的图象上任意一点的切线的斜率恒大于,求的取值范围.
函数对任意实数都有.(1)求的值;(2)若,求的值,猜想时的表达式,并用数学归纳法证明你的结论.
某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为和.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
随机变量的分布列如下表所示:
(1)求的值以及;(2)求的数学期望.