(本小题满分13分)已知函数在处取得极值2.(1)求函数的表达式;(2)当满足什么条件时,函数在区间上单调递增?(3)若为图象上任意一点,直线与的图象切于点,求直线的斜率的取值范围.
(7分)已知定点,动点在直线上运动,当线段最短时,求的坐标.
(7分) 已知两条直线:与:的交点,求满足下列条件的直线方程 (1)过点P且过原点的直线方程; (2)过点P且平行于直线:直线的方程;
(本小题满分12分) 已知函数,对于任意的,恒有. (1)证明:当时,; (2)如果不等式恒成立,求的最小值.
(本小题满分12分) 设数列的前项和为,已知 (1)设,证明数列是等比数列; (2)求数列的通项公式.
(本小题满分12分) 设命题:函数在上单调递减 命题:关于不等式对于恒成立 如果是真命题,是假命题,求的范围.