(本小题满分14分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为记.(1)求随机变量 的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
已知函数是上的可导函数,若在时恒成立. (1)求证:函数在上是增函数; (2)求证:当时,有.
设三次函数在处取得极值,其图象在处的切线的斜率为。求证:;
设,.令,讨论在内的单调性并求极值;
已知定义在正实数集上的函数,其中。设两曲线有公共点,且在公共点处的切线相同。 (1)若,求的值; (2)用表示,并求的最大值。
对于三次函数,定义:设是函数的导函数的导数,若有实数解,则称点为函数的“拐点”。现已知,请解答下列问题: (1)求函数的“拐点”A的坐标; (2)求证的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明).