如图,在三棱锥中,,,点分别是的中点,底面.(1)当时,求直线与平面所成角的余弦值;(2)当取何值时,在平面内的射影恰好为△的重心?
(本小题满分12分)如图三棱锥中,,,,.证明:(Ⅰ)面面;(Ⅱ)求点到平面的距离..
(本小题满分12分)某市为调研高三一轮复习质量在2015年1月份组织了一次期末统一考试,并从某校2015届高三理科学生在该次考试的数学成绩进行分析,利用分层抽样抽取90分以上的1200名学生的成绩进行分析,已知该样本的容量为20,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:
(Ⅰ)求表中的值并估计这次考试全校学生数学成绩优秀的人数(分数在范围为优秀); (Ⅱ)从得分在内的学生随机选2名学生得分,求2名学生的平均分不低于140分的概率.
(本小题满分12分)在中,角所对的边分别为,且.(Ⅰ)求角;(Ⅱ)若,,为的中点,求的长度.
(本小题满分14分)已知抛物线的焦点为,准线与轴的交点为.点()在抛物线上,且的外接圆圆心到准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)若直线与抛物线交于另一点,证明:为定值;(Ⅲ)过点作圆的两条切线,与轴分别交于、两点,求面积取得最小值时对应的值.
(本小题满分13分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)是否存在实数,使得当时,对任意的,恒有?若存在,试求出实数的取值范围,若不存在,试说明理由.