已知椭圆C:的离心率为,过右焦点F且斜率为1的直线交椭圆C于A、B两点,N为弦AB的中点.(Ⅰ)求直线ON(O为坐标原点)的斜率;(Ⅱ)对于椭圆C上任意一点M,试证:对任意的等式都成立.
已知函数在取得极值。 (Ⅰ)确定的值并求函数的单调区间;(Ⅱ)若关于的方程至多有两个零点,求实数的取值范围。
已知的展开式前三项中的的系数成等差数列. (1)求展开式中所有的的有理项; (2)求展开式中系数最大的项.
从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.
已知函数.(1)求函数的图像在点处的切线方程;(2)若,且对任意恒成立,求的最大值;(3)当时,证明.
如图,已知直线与抛物线和圆都相切,是的焦点.(1)求与的值;(2)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以为邻边作平行四边形,证明:点在一条定直线上;(3)在(2)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于两点,求的面积的取值范围.