已知椭圆C:的离心率为,过右焦点F且斜率为1的直线交椭圆C于A、B两点,N为弦AB的中点.(Ⅰ)求直线ON(O为坐标原点)的斜率;(Ⅱ)对于椭圆C上任意一点M,试证:对任意的等式都成立.
(本小题满分12分) 如图,在三棱锥中,,,,,, 点,分别在棱上,且, (Ⅰ)求证:平面PAC (Ⅱ)当为的中点时,求与平面所成的角的正弦值; (Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
等差数列的各项均为正数,,前项和为,为等比数列, ,且. (1)求与; (2)求数列的前项和。
(本小题满分12分) 在中,a,b,c分别是角A,B,C的对边,已知 (1)求的大小; (2)设且的最小正周期为,求的最大值。
已知是实数,函数。 (Ⅰ)若,求的值及曲线在点处的切线方程; (Ⅱ)求在区间上的最大值。
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?