(本小题满分13分)如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙).(Ⅰ)求证:平面;(Ⅱ)当的长为何值时,二面角的大小为?
口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求: (1)n的值; (2)X的概率分布与数学期望.
设f(x)=x2x+13,实数a满足|xa|<1,求证:|f(x)f(a)|<2(|a|+1).
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系xoy的原点为极点,OX为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为 ρsin(θ+)="0," 求与直线l垂直且与曲线C相切的直线m的极坐标方程.
已知矩阵M=,N=. (1)求矩阵MN; (2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证: (1)l是⊙O的切线; (2)PB平分∠ABD.