(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立. 求:(I)打满3局比赛还未停止的概率;(II)比赛停止时已打局数的分别列与期望E.
(本小题满分13分) 在平面直角坐标系中,O为坐标原点,已知点A (I)若求证:; (II)若求的值.
(本小题满分14分) 已知数列满足且 (Ⅰ)求; (Ⅱ)求; (Ⅲ)设为非零整数),试确定的值,使得对任意都有成立。
(本小题满分13分) 已知函数是偶函数. (1)求的值; (2)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
(本小题满分14分) 市政府为招商引资,决定对外资企业第一年产品免税.某外资厂该年A型产品出厂价为每件60元,年销售量为11.8万件.第二年,当地政府开始对该商品征收税率为p%(0<p<100,即销售100元要征收p元)的税收,于是该产品的出厂价上升为每件元,预计年销售量将减少p万件. (Ⅰ)将第二年政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域; (Ⅱ)要使第二年该厂的税收不少于16万元,则税率p%的范围是多少? (Ⅲ)在第二年该厂的税收不少于16万元的前提下,要让厂家获得最大销售金额,则p 应为多少?
(本小题满分12分) 在数列中,,当时,其前项和满足. (1)求; (2)令,求数列的前项和.