(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立. 求:(I)打满3局比赛还未停止的概率;(II)比赛停止时已打局数的分别列与期望E.
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数. (1)证明数列是“平方递推数列”,且数列为等比数列; (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式; (3)记,求数列的前项和,并求使的的最小值.
某居民小区有两个相互独立的安全防范系统(简称系统)甲和乙,系统甲和系统乙在任意时刻发生故障的概率分别为和,若在任意时刻至多有一个系统发生故障的概率为 (Ⅰ)求的值; (Ⅱ)设系统乙在次相互独立的检测中不发生故障的次数为随机变量,求的数学期望
设函数 (Ⅰ)求函数的最大值及此时的取值集合; (Ⅱ)设为的三个内角,若,,且为锐角,求的值.
(本小题满分10分)选修4—5:不等式选讲 已知函数. (1)当时,解不等式; (2)若存在实数,使得不等式成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是. (1)写出直线的极坐标方程与曲线的普通方程; (2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.