(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立. 求:(I)打满3局比赛还未停止的概率;(II)比赛停止时已打局数的分别列与期望E.
已知圆C的方程为,直线. (1)求的取值范围; (2)若圆与直线交于P、Q两点,且以PQ为直径的圆恰过坐标原点,求实数的值.
在直角坐标系xOy中,圆C:,圆心为C,圆C与直线的一个交点的横坐标为2. (1)求圆C的标准方程; (2)直线与垂直,且与圆C交于不同两点A、B,若,求直线的方程.
点到的距离是点到的距离的倍. (1)求点的轨迹方程; (2)点与点关于点对称,点,求的最大值和最小值. (3)若过的直线从左向右依次交第(2)问中的轨迹于不同两点,,,判断的取值范围并证明.
已知圆,直线 (1)求证:对,直线与圆总有两个不同的交点A、B; (2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点. (1)求直线与平面所成角的余弦值; (2)求点到平面的距离; (3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.