(本小题满分12分)某人上楼梯,每步上一阶的概率为,每步上二阶的概率为,设该人从台阶下的平台开始出发,到达第n阶的概率为。(Ⅰ)求;(Ⅱ)该人共走了5步,求该人这5步共上的阶数ξ的数学期望。
(本小题共12分)直四棱柱中,底面是边长为的正方形,侧棱长为4。(1)求证:平面平面;(2)求点到平面的距离d;(3)求三棱锥的体积V。
(本小题共12分)如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点,求异面直线OC与MN所成角的余弦值。
已知数列是首项为1,公差为2的等差数列,是首项为1,公比为3的等比数列,(1)求数列、的通项公式 ; (2)求数列的前n项和。
如图,四棱锥中,底面是边长为2的正方形,顶点在底面的射影是底面的中心,侧棱长为2, G是PB的中点。①证明:PD// 面AGC; ②求AG和平面PBD所成的角的正切值。
(本小题满分10分)设数列前n项和为,且(1)求的通项公式;(2)若数列满足且(n≥1),求数列的通项公式