(本小题满分12分) 某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从2种服装商品、3种家电商品、5种日用商品中,选出3种商品进行促销活动。(I)试求选出的3种商品中至少有一种是日用商品的概率;(II)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高120元,同时允许顾客有3 次抽奖的机会,若中奖,则每次中奖都可获得60元奖金,假设顾客每次抽奖时获奖与否是等可能的。试求某位顾客所中奖金数不低于商场提价数的概率。
(本大题满分12分)在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线. (1)求角的大小; (2)如果,且,求的值.
已知函数,其中. (1)当a=3,b=-1时,求函数的最小值; (2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.
已知抛物线,准线与轴的交点为. (Ⅰ)求抛物线的方程; (Ⅱ)如图,,过点的直线与抛物线交于不同的两点,AQ与BQ分别与抛物线交于点 C,D,设AB,DC的斜率分别为,的斜率分别为,问:是否存在常数,使得, 若存在,求出的值,若不存在,说明理由.
【原创】设数列的前项和为,且满足. 证明:数列是等差数列; 若等差数列的公差,且成等比数列,求数列的前项和.
(本大题满分12分)某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
(1)求、、的值; (2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率