(本小题满分12分) 如图,在三棱锥P—ABC中,AB⊥BC,AB =" BC" = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC.(1) 求证:ED∥平面PAB;(2) 求直线AB与平面PAC所成的角;(3) 当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?
在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。
如图,是⊙的直径,、是⊙上的点,是的角平分线,过点点作,交的延长线于点,,垂足为点, ⑴求证:是⊙的切线 ⑵求证:
在极坐标系中,已知圆与直线相切,求实数a的值。
如图,⊙I是△ABC的内切圆. (I)如果∠A=500,求∠BIC的度数; (II)若△ABC的周长为12,面积为6,求⊙I的半径
求证:(1); (2) +>+。