(本小题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,. (1) 证明:AD⊥平面PAB; (2) 求异面直线PC与AD所成的角的大小; (3) 求二面角P—BD—A的大小.
已知函数. (I)求函数的最小值; (II)若,求的值.
已知. (I)判断的奇偶性; (II)求的值域.
数学运算中,常用符号来表示算式,如=,其中,. (Ⅰ)若,,,…,成等差数列,且,公差,求证:; (Ⅱ)若,,记,且不等式对于恒成立,求实数的取值范围.
抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记表示的整数部分,如:,设为随机变量,. (Ⅰ)求概率; (Ⅱ)求的分布列,并求其数学期望.
在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点P的直角坐标.